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ABSTRACT

This paper is a continuation of a series of papers on the universe as the
surface volume of a four dimensional, expanding hyperverse. We argue that the
whole universe is undergoing a geometric mean expansion, and is larger than the

observable hyperverse by a factor of
(
RH
2lp

)4
, and its radius is larger by a factor

of
(
RH
2lp

) 4
3
. The growth rate of the whole is actually accelerating, compared

to the constant, 2c velocity we measure for the observable universe. We show
that the ratio of the length of the small energy quantum (SEQ), to the small
radius quantum (SRQ), values discussed at length in earlier hyperverse papers,
is increasing at the same rate as the whole radius is increasing. We also show
that, depending on the type of particle, the amount of time it takes for a particle
to travel the distance of one SEQ length, approximately 10−23 seconds, matches
the time it takes for the particle to absorb one SEQ of energy. The quantum of
time is the time it takes for an elementary particle to absorb one SEQ quantum
of energy. The unit of quantum time is not a constant, but increases in duration
at the same rate as the increase in the velocity of the whole hyperverse, canceling
it, giving us the constant, 2c radial expansion rate.
Significantly, our equation for the quantum of time, derived from the hyper-

verse model, using only the values of c, G, h-bar and the radius of the observable
hyperverse, matches the quantized time interval calculated for the electron by
Piero Caldirola, using classical electron theory. His ’chronon’, and our quantum
absorption time, are identical values. Equating the two quantum time equations
produces the correct equation of electric charge, further supporting the validity
of the hyperverse model and the unit of quantum time. We continue by showing
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that the relation between particle mass and quantum absorption time is gov-
erned by the time-energy uncertainty relationship, allowing easy calculation of
the quantum time values for all elementary particles, and supporting the concept
of the geometric mean expansion of space.

Subject headings: geometric mean expansion of space; quantum time, quantum
gravity;chronon,matter absorbs space,2c expansion of space

1. Introduction

In a previous hyperverse paper [1] we showed that if we took the three dimensional
volume of the observable universe, with a radius of about 46.25 billion light years, and
wrapped it around to form the surface volume of a four dimensional hypersphere, that the
radius of this ’observable hyperverse’would be 27.6 billion light years. Given the age of
the universe as 13.8 billion years, we find a striking result: our observable hyperverse is
expanding at exactly twice the speed of light.

Assuming this 2c radial expansion is meaningful, we developed models [2,3,4] for time,
proposed that the universe is undergoing a geometric mean expansion that creates quanta,
and showed that the Planck values represent the initial condition of the universe, preserved
for us as the geometric means of expansion. We also developed the idea that particles of
matter are not static entities, but are dynamic, created to conserve the continually increasing
angular momentum of the universe. The universe must continually create matter by crushing
and coalescing the quanta of space, and existing particles must continually accrete the quanta
of space to conserve angular momentum, explaining why all particles of a kind are identical.
The rate of the continual absorption of space by matter matches the force of gravity; gravity
is the continuing process of creation and growth of elementary particles.

Despite the productiveness of the hyperverse model, there is a problem: the whole
hyperverse is much larger than the observable hyperverse; the observable universe is just
a small part of the surface of the whole. Given that the observable hyperverse and the
whole hyperverse are both the same age, the expansion rate of the whole would be much
greater than 2c. Furthermore, calculations show the expansion rate of the whole hyperverse
is actually accelerating.

In this paper we will present a model of quantized time, link it precisely to quantum
gravity by showing that the time it takes for an elementary particle to absorb one quantum
of space is the unit of quantized time, and show that the increase in the duration of the
quantum unit of time cancels the accelerating growth of the whole hyperverse, giving us
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the constant, 2c expansion that we actually experience. Additionally, we will show that our
unit of quantized time, developed from the hyperverse concept and using only the constants
of c, G, h-bar, and the radius of the observable hyperverse, matches the unit of quantized
time developed by Piero Caldirola [6], termed the "chronon", using properties of the classical
electron such as electron charge and the permittivity of free space. Significantly, combining
the two quantum time equations gives us the accepted equation for the electron charge.

The primary contributions of this paper are:

1. We support the earlier claim that the energy and volume of the whole hyperverse is

larger than the observable by a factor of
(
RH
2lp

)4
, and its radius is larger by the cube root,

or
(
RH
2lp

) 4
3
.

2. We show that the whole universe is not only larger than the observable, its expansion
rate is greater, and in particular, it is accelerating. This is quite different from the constant,
twice the speed of light expansion rate, we find with the observable hyperverse model.

3. From the geometric mean paper [3], we review that the small energy quantum, the
SEQ, which is the geometric mean counterpart of the energy of the observable universe,
increases in size as the universe expands. Also from [3] we argued there is a second, much
smaller quantum, the small radius quantum, or SRQ, derived from the radius of the ob-
servable hyperverse, which shrinks with expansion. In this paper, we show that the ratio of
the SEQ to the SRQ matches the ratio of the radial velocity of the whole to the observable
hyperverse.

4. Similarly, the ratio of the time it takes an SEQ to make frame advances, relative to
the SRQ frame advance time, increases at the same rate as the rate that the velocity of the
whole is increasing relative to the observable hyperverse.

5. We propose that the frame advance time of the SEQ is the unit of quantum time.

6. This means that the basic unit of time is expanding at the same rate as the radial
velocity of the whole; the faster the whole expands, the further the longer it takes for a
unit of time to occur, resulting in mutual cancellation, and producing the constant 2c radial
expansion.

7. We claim that the constant, 2c radial expansion rate is the result of the growth in
the quantized time cancelling the accelerating expansion rate of the whole hyperverse.

8. Importantly, we show that the time for an elementary particle to absorb an SEQ
equals the SEQ frame advance time. That is, particles of matter absorb one quanta of energy
for every unit of quantized time.
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9. This is the key relation between quantized time, quantized energy, and quantized
gravity: a particle of matter absorbs one unit of energy in one unit of time.

10. We show that the quantized unit of time developed by Piero Caldirola matches the
hyperverse quantum time unit, using very different equations and concepts. Combining the
Caldirola and hyperverse equations gives us the correct equation for the electric charge.

11. The value of the quantum time of any elementary particle can be calculated simply
by using the time-energy uncertainty relationship. That is, we show that the product of the
particle’s energy and its associated quantum time equals h-bar over two.

11. The two most critical claims in this paper are that quantum time is the time for
a particle of matter to absorb a quantum of space, and secondly, the unit of quantum time
lengthens as space expands, in a manner that cancels the radial acceleration of the whole
hyperverse, giving us a constant 2c expansion rate.

2. The Whole Hyperverse

The whole universe is larger than the observable universe. In the Geometric Mean paper
[1], equation (70), we gave a possible energy, and size, for the whole hyperverse. Using the
geometric mean concept, we asked what the geometric mean counterpart of the energy of
the small radius quantum, or SRQ, would be, and calculated a value, as shown in equation
(1).

Ewhole =
(initial energy)2

ESRQ
=

(√
c5~
G

2

)2
c~
RH

(
2lp
RH

)4 = RHc
4

4G

(
RH

2lp

)4
= EO

(
RH

2lp

)4
(1)

Ewhole is the energy of the whole hyperverse, ESRQ is the energy of the small energy
quantum, c is the speed of light, ~ is the reduced Planck constant, G is the gravitational
constant, RH is the fourth-dimensional radius of the observable hyperverse, and lp is the
Planck length.

We find that the geometric mean partner of the SRQ energy is an energy larger than

that of the observable universe, by a factor of
(
RH
2lp

)4
, or approximately 4. 3× 10243. We will

work with the idea that the energy of the whole hyperverse is this geometric mean partner
of the small radius quantum energy:
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Ewhole = 3. 449 731 845 561 096 007 9× 10313
m2

s2
kg (2)

If we assume that the energy density of the whole universe is the same as it is within
the observable universe, we can deduce that the whole hyperverse surface volume is larger

by the factor of
(
RH
2lp

)4
. That is, the volume of the whole universe is:

Vwhole = VH ×
(
RH

2lp

)4
(3)

Using the equation for the surface volume of a 4D sphere, 2π2R3, we can calculate the
radius, the fourth-dimensional radius or hyper-radius, of the whole hyperverse:

The volume of the whole hyperverse, Vwhole or Vw, is:

Vwhole = 2π
2R3w (4)

where Rw is the fourth-dimensional radius of the whole hyperverse.

The volume of the observable hyperverse, VH is:

VH = 2π
2R3H (5)

Combining the above equations, we find:

Vw = VH ×
(
RH

2lp

)4
= 2π2R3H ×

(
RH

2lp

)4
= 2π2R3w (6)

We get the radius of the whole hyperverse by solving this equation, for Rw:

2π2R3w = 2π
2R3H ×

(
RH

2lp

)4
(7)

Rw =

2π2R3H ×
(
RH
2lp

)4
2π2


1
3

= RH

(
RH

2lp

) 4
3

= 4. 281 459 115 196 810 360 1× 10107m (8)
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In summary, we make the claim that the whole volume, and whole energy, are larger

than the observable by a factor of
(
RH
2lp

)4
, and the radius of the whole is larger than the

observable hyperverse radius by a factor of
(
RH
2lp

) 4
3
:

Ew = EO

(
RH

2lp

)4
(9)

Rw = RH

(
RH

2lp

) 4
3

(10)

3. Then and Now for the Whole Hyperverse: The Geometric Mean Expansion
of the Whole Hyperverse

Let us look at what happens to the whole hyperverse with a doubling in its radius.
"Rw now" represents the current radius of the whole hyperverse. "Rw then" represents the
radius when the universe was half its current size. In other words, when the hyperverse
radius, RH , was half the current size.

Rw now
Rw then

=
RH

(
RH
2lp

) 4
3

RH
2

(
RH
2

2lp

) 4
3

= 4
3
√
2 = 5. 039 684 199 579 492 659 1 (11)

With a doubling of the radius of the observable hyperverse, the radius of the whole
hyperverse increases by a factor of 4 3

√
2. Since, by definition, the observable radius doubles

with a doubling, the radius of the whole increases faster than the radius of the observable
by a factor of 2 3

√
2 with each doubling:

4 3
√
2

2
= 2

3
√
2 = 2. 519 842 099 789 746 329 5 (12)

The energy of the whole hyperverse, now to then, is:

Ew now
Ew then

=

RHc
4

4G

(
RH
2lp

)4
RH
2
c4

4G

(
RH
2

2lp

)4 = 32 (13)
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The energy of the observable hyperverse doubles with a doubling of the radius:

EO now
Ew then

=
RHc

4

4G
RH
2
c4

4G

= 2 (14)

The energy of the whole is increasing at a faster rate than the observable, by a compar-
ative factor of 32

2
, or 16, and the radius by 2 3

√
2 or about 2. 519 8 times.

4. The 2c Expansion Rate of the Observable Universe

In [1] we asked: "If the universe is the surface volume of a 4D sphere, how large would
a hyperverse be whose 3D surface volume matched the volume of our observable universe?"
That is, we solve for the following equation:

2π2R3H =
4

3
πr3o (15)

where ro is the radius of the observable universe. Using the 46.25 billion light years for
the radius of the observable universe, we find that the radius of the observable hyperverse
would be 27.5866 billion light years:

RH = (46.25)
3

√
2

3π
≈ 27.5866 billion light years (16)

Given the age of the universe is about 13.8 billion years old, we discover the striking
result that the speed of radial expansion is twice the speed of light, or 2c:

27.5866 billion light years
13.8 billion years

= 1. 999 light years per year ⇒ 2c (17)

The observable hyperverse is expanding at exactly twice the speed of light.

5. The Dilemma of 2c

The observable hyperverse is part of the whole hyperverse. As discussed above, the

whole universe is larger than the observable, presumably by a factor of
(
RH
2lp

)4
. If, for
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example, the whole hyperverse were only twice as large as the observable, the radius of the
whole would be twice as big, and given the whole and observable universes are the same
age, the radial expansion rate would be 4 times the speed of light, or 2 × 2c. If the whole
were 10243 times larger, the expansion rate would be 10243 times the 2c expansion rate we
calculate for the observable.

In a series of papers [1,2,3,4] we argued that 2c is the perfect expansion rate for the
hyperverse, as it gives us our models for time, quanta, matter and gravity. But the whole
is larger, and since the observable is simply a tiny portion of the whole, and the whole and
observable are the same age, the whole must be expanding at 10243 times faster than the

observable hyperverse; the whole must be expanding at 2c×
(
RH
2lp

) 4
3
.

To state this more explicitly, if the whole radius is RH

(
RH
2lp

) 4
3
and the age of the universe

is RH
2c
, then the velocity of radial expansion would be the radial distance divided by the time:

radial velocity =
distance
time

=
RH

(
RH
2lp

) 4
3

RH
2c

= 2c

(
RH

2lp

) 4
3

(18)

This presents a clear problem: how can we have two radial velocities for every point in space?

6. The Accelerating Expansion of the Whole

Additionally, our 2c radial expansion for the observable hyperverse is a constant velocity,

but the whole is expanding at 2c
(
RH
2lp

) 4
3
. Notice that the whole hyperverse radial expansion

rate contains the RH term in the numerator, meaning the expansion rate of the whole is
increasing with time; the growth of the whole hyperverse is accelerating. To us, there is no
acceleration, as we appear to be expanding at the constant velocity of 2c.

Using the ’now to then’approach, we see that the whole radius is expanding by a factor
of 2 3
√
2 with each doubling, matching the change in the radius of the whole, discussed above:

radial expansion rate of whole NOW
radial expansion rate of whole THEN

=
2c
(
RH
2lp

) 4
3

2c

(
RH
2

2lp

) 4
3

= 2
3
√
2 (19)
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The radial expansion rate of the observable NOW to THEN is:

radial expansion rate of observable NOW
radial expansion rate of observable THEN

=
2c

2c
= 1 (20)

The relative expansion rate of the whole to the observable is 2 3
√
2:

(
radial expansion rate of whole NOW
radial expansion rate of whole THEN

)
(
radial expansion rate of observable NOW
radial expansion rate of observable THEN

) = 2 3
√
2 (21)

So we have a problem of two velocities, and that the observable hyperverse is expanding
at a constant rate of 2c, but the whole is undergoing an accelerating expansion, at the vastly

greater rate of 2c
(
RH
2lp

) 4
3
.

7. Reviewing the SEQ and SRQ

In the Geometric Mean paper [1] we defined two quantum levels within the observable
hyperverse, the small energy quantum, and the small radius quantum. The small energy
quantum, or SEQ, is the geometric mean partner of the energy of the observable universe.
We calculate the SEQ from this expression:

ESEQ =
E2initial
EO

=

(√
c5~
G

2

)2
RHc4

4G

=
c~
RH

(22)

Einitial represents the initial energy of the universe, existing at the time the current,
geometric mean expansion started. We derived and use the value of one-half the Planck
energy.

The radius of this quantum, from [3] is:

RSEQ =
(
RH4l

2
p

) 1
3 = RH

(
2lp
RH

) 2
3

= 6. 495 953 894 227 408 611 9× 10−15m (23)

This is similar to the Compton radius of elementary particles. We claimed in [3] that
this quantum level is the quantum of our existence, the quantum of quantum mechanics.
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The small radius quantum, or SRQ, is the geometric mean partner of the radius of the
observable hyperverse, and is derived as:

RSRQ =
(2lp)

2

RH

=
4l2p
RH

= RH

(
2lp
RH

)2
(24)

The energy associated with it is:

ESRQ =
c~
RH

(
2lp
RH

)4
= 2. 773 577 165 630 088 315× 10−296m

2

s2
kg (25)

This quantum level is much smaller than the SEQ.

We looked at how both the SEQ and SRQ change with time, using the ’now and then’
comparison. We find with a doubling of the observable hyperverse radius, that the SEQ
radius increases with expansion by a factor of 3

√
2 with each doubling of the observable

hyperverse radius.:

SEQ radius NOW
SEQ radius THEN

=

(
RH4l

2
p

) 1
3(

RH
2
4l2p
) 1
3

=
3
√
2 = 1. 259 921 049 894 873 164 8 (26)

The SRQ radius shrinks by one-half with every doubling of the observable hyperverse
radius:

SRQ radius NOW
SRQ radius THEN

=

4l2p
RH
4l2p
RH
2

=
1

2
(27)

The relative size change of the SEQ radius to the SRQ radius is

(
SEQ radius NOW
SEQ radius THEN

)
(
SRQ radius NOW
SRQ radius THEN

) = 3
√
2
1
2

= 2
3
√
2 (28)

With each doubling of the hyperverse, the SEQ radius increases in size, compared to
the SRQ radius, by a factor of 2 3

√
2. Importantly, notice that this rate of relative change

in the quantum levels’radii matches the rate of change of the radial velocity of the whole
hyperverse relative to the observable hyperverse.
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8. Reviewing the Ideal Particle

In [4] we introduced the concept of the ’ideal particle’, a particle with the target values
of mass and radius that appears to be what the expanding universe is trying to create.
Actual particles are somewhat different, assumably due to electrical interactions. electrical
interactions, in hyperverse theory, are believed to result for spin orientations [5]. These
equations are derived from the geometric mean model and reflect the conservation of angular
momentum. The three equations of the ideal particle are:

particle radius:
(
16l4p
RH

) 1
3

= RH

(
2lp
RH

) 4
3

(29)

particle mass:
(
1

4G

~2

RH

) 1
3

=

(
RHc

2

4G

)(
2lp
RH

) 4
3

(30)

particle number:
(
RH

2lp

) 4
3

(31)

9. The SEQ Frame Advance

In the paper on time and the hyperverse [3], we discussed the concept of frame advances,
in which the radial advance of the hyperverse can be described as occurring in incremental
steps, or frames, each frame advance equal to the radius of either the SEQ or SRQ quantum
level.

To calculate the number of frames at the SEQ level, we take the radius of the observable
hyperverse, and divide it by the SEQ radius:

RH

RSEQ

=
RH(

RH4l2p
) 1
3

=

(
RH

2lp

) 2
3

= 4. 039 394 679 712 516 885 5× 1040 (32)

The time for the hyperverse to make one SEQ frame advance is the age of the universe,
divided by the number of SEQ frame advances:
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age of universe
number of SEQ frame advances

=
RH
2c(

RH
2lp

) 2
3

=

(
RH4l

2
p

) 1
3

2c
=
Radius of the SEQ

2c
(33)

An SEQ frame advance currently takes about 10−23 seconds:

(
RH4l

2
p

) 1
3

2c
=
6. 495 953 894 227 408 611 9× 10−15m

2 (2.99792458× 108ms−1) = 1. 083 408 491 588 438 928× 10−23 s

(34)

Notice that the hyperverse radius is in the numerator, so that the time for an SEQ to
make a frame advance increases as the universe expands. Using the ’now and then’approach,
we find that the time to make a frame advance increases at a rate of one-half the rate of the
radial distance, from equation (26):

time for SEQ to make a frame advance NOW
time for SEQ to make a frame advance THEN

=

(RH4l2p)
1
3

2c(
RH
2
4l2p

) 1
3

2c

=
3
√
2 (35)

10. SRQ Frame Advances

We determine the number of frame advances at the SRQ level similarly, by dividing the
observable hyperverse radius by the radius of the SRQ:

RH

RSRQ

=
RH

4l2p
RH

=

(
RH

2lp

)2
= 6. 590 962 905 388 697 310 3× 10121 (36)

The time for the hyperverse to make one SRQ frame advance is the age of the universe
divided by the number of SRQ frame advances:

age of universe
number of SRQ frame advances

=
RH
2c(
RH
2lp

)2 = 4l2p
RH

2c
=
Radius of SRQ

2c
(37)

Numerically, an SRQ frame advance takes about 6.6× 10−105 seconds:
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4l2p
RH

2c
=
3. 981 166 633 261 840 704 9× 10−96m

2 (2.99792458× 108ms−1) = 6. 639 871 229 285 295 604 2× 10−105 s (38)

This is the value we defined as ’small time’in [3].

11. The Acceleration of the Whole Hyperverse is Cancelled by the Increase in
the Duration of the SEQ-Based Quantum of Time

We showed in equation (19) that with each doubling of the hyperverse radius, the whole
radius is expanding faster than the observable radius by the factor of 2 3

√
2. And in equation

(28) we showed that with each doubling of the observable hyperverse radius, that relative to
the SRQ radius, the SEQ radius also increases by a factor of 2 3

√
2. Both the whole radius,

and the SEQ unit of time, are increasing at the same rate.

Comparing the time for an SEQ frame advance against that of the SRQ, we find that

the SEQ frame advance time increases at a rate of
(
RH
2lp

) 4
3
relative to the SRQ:

SEQ frame advance time
SRQ frame advance time

=

(
(RH4l2p)

1
3

2c

)
(

4l2p
RH

2c

) =

(
RH

2lp

) 4
3

(39)

This equals the rate that the radial velocity of the whole increases, relative to the
observable hyperverse:

radial velocity of the whole hyperverse
radial velocity of the observable hyperverse

=
2c
(
RH
2lp

) 4
3

2c
=

(
RH

2lp

) 4
3

(40)

Here is the key point: both the radial velocity of the whole hyperverse, relative to the
observable, and the frame advance time of an SEQ, relative to the frame advance time of
the SRQ, are increasing at the same rate. Their identical rates cancel, leaving us with the
constant expansion velocity of 2c.

We are accustomed to thinking of time as a constant, but we see that in the accelerating,
whole hyperverse, the SEQ frame advance time increases with expansion.
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We can express the frame advance time in terms of time. Using the relation that the
age of the universe is RH

2c
:

Let T = the age of the universe, so that T =
RH

2c
(41)

and rearrange:

RH = T × 2c (42)

we can restate equation (33), replacing the RH term with T × 2c:

SEQ frame advance time =

(T × 2c× 4l2p) 13
2c

 =
3

√
T
G~
c5
=
(
Tt2P

) 1
3 (43)

This value is based on the ideal particle mass and radius, and would vary according to
the structure of the specific particle. Thus we could see this as the "ideal quantum absorption
time".

12. The Time it Takes for a Particle to Absorb a Quantum of Energy is the
SEQ Frame Advance Time

We discussed a model of particle creation in [4], claiming that particles of matter exist
because the expanding universe is crushing and coalescing the quanta of space to conserve
the continually increasing angular momentum.

The energy of the ideal particle is:

energy of the ideal particle =
(
1

4G
c6
~2

RH

) 1
3

(44)

The number of SEQ in a particle is the particle mass divided by the energy of an SEQ:

The number of SEQ within the ideal particle =

(
1
4G
c6 ~

2

RH

) 1
3

c~
RH

=

(
RH

2lp

) 2
3

(45)
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From equation (32), notice that this value matches the number of SEQ frame advances,
suggesting a particle of matter absorbs one SEQ per SEQ frame advance.

We can calculate the rate at which SEQ are absorbed by a particle by dividing the total
time, by the number of SEQ in a particle:

age of universe
number of SEQ in a particle

=
RH
2c(

RH
2lp

) 2
3

=
3
√
RH4l2p
2c

=
Radius of the SEQ

2c
(46)

The time it takes for an ideal particle to absorb an SEQ is about 10−23 seconds:

3
√
RH4l2p
2c

=
6. 495 953 894 227 408 611 9× 10−15m

2 (2.99792458× 108ms−1) = 1. 083 408 491 588 438 928× 10−23 s

(47)

13. The Relation to Piero Caldirola’s "Chronon"

Piero Caldirola produced an equation for the unit of quantum time, for the classical
electron. In the paper by Farias and Recami [6], equation 13 gives Caldirola’s value of
quantum time, which he termed the "chronon":

Caldirola’s quantum time =
2

3

1
4πε0

e2

mc3
=

e2

6πc3mε0
= 6. 266 420 091 262 249 288 4× 10−24 s

(48)

e represents the electron charge, and ε0 is the permittivity of free space.

The unit of quantum time produced by the hyperverse model, based on the ideal particle,
is:

Hyperverse quantum time =

(
RH4l

2
p

) 1
3

2c
= 1. 083 408 491 588 438 928× 10−23 s (49)

They are close, off by a factor of about 1.7289. Caldirola determined quantum time for
the classical electron, whereas the hyperverse unit is for on the ideal particle.
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Let us:

1. insert ideal particle mass into Caldirola equation.

2. convert from classical to Compton radii by use of the fine structure constant, α.

3. modify the fraction in the Caldirola equation, changing it from 2/3 to 1/2.

When we do this, we find that the modified Caldirola equation gives the same value for
quantum time as does the hyperverse model, for the ideal particle:

modified Caldirola =
1

2

1
4πε0

e2

αmc3
=

e2

8πc3mαε0
= 1. 083 406 909 226 670 033 1× 10−23 s (50)

So we have the identity:

1

2

1
4πε0

e2

αmc3
=

(
RH4l

2
p

) 1
3

2c
(51)

Let us insert the ideal particle mass,
(
1
4G

~2
RH

) 1
3
, rearrange, and solve for the electric

charge:

e =
√
4πcαε0~ (52)

We find the value matches the CODATA value for the electron charge [7].

We can also compare the quantum unit of time of an electron, calculated by both the
modified Caldirola equation and the hyperverse equation:

electron in modified Caldirola equation: t =
1

2

1
4πε0

e2

αmelectronc3
= 6. 440 438 533 690 713 174 5×10−22 s

(53)

Using the hyperverse equation with the Compton radius of the electron, we find the
same time interval:

Compton radius of electron
2c

=
~

melectronc

2c
=

~
2melectronc2

=
~

2Eelectron
= 6. 440 438 816 915 123 747×10−22 s

(54)
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We find the remarkable result that the modified Cardirola equation gives the same value
for the quantum of time as does the hyperverse model. And equating them gives the correct
equation for the electron charge, supporting the validity of the equations.

14. The Quantum Time and Energy of a Particle Fit the Time-Energy
Uncertainty Relation

We have claimed that quantum time is both the frame advance time of the particle, and
the time it takes a particle to absorb a quantum of space. From equation (54), notice that
this expression

tabsorb =
~
2
× 1

Eparticle
(55)

is a time-energy uncertainty relationship:

~
2
= tabsorb × Eparticle (56)

We used time-energy uncertainty in [3] to argue that the universe is undergoing a geo-
metric mean expansion, and here, we find further support for that claim. Since we are dealing
with the quantum levels themselves, we have no need of delta values.

15. The Quantum Unit of Time for Elementary Particles

We can use this relationship to calculate the quantum unit of time for other particles.
The following table gives the quantum time values for the elementary particles; that is, the
time it takes for each particle type to absorb one SEQ.
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particle energy time
ideal particle 4. 866 924× 10−12 J 1. 083 407× 10−23 s

electron 8. 187 10565× 10−14 J 6. 440 440 × 10−22 s
muon 1. 692 833 774 × 10−11 J 3. 114 812× 10−24 s
tau 2. 846 78 × 10−10 J 1. 852 219× 10−25 s

up quark 3. 685 009× 10−13 J 1. 430 894 × 10−22 s
charm 2. 042 776 × 10−10 J 2. 581 222 × 10−25 s
top 2. 777 214 183 822× 10−8 J 1. 898 614 × 10−27 s

down quark 7. 690 451 184× 10−13 J 6. 856 371 × 10−23 s
strange 1. 522 068 463 5× 10−11 J 3. 464 272 × 10−24 s
bottom 6. 697 101 239 4× 10−10 J 7. 873 345× 10−26 s

electron neutrino 3. 524 790 126× 10−19 J 1. 495 936× 10−16 s
muon neutrino 2. 723 701 461× 10−14 J 1. 935 917× 10−21 s
tau neutrino 2. 483 374 861 5× 10−12 J 2. 123 263 × 10−23 s
Table 1. The SEQ absorption times for the elementary particles.

16. Relating Matter, Gravity and Time

From the above equations, we can state that a particle of matter absorbs one SEQ with
each SEQ frame advance. Thus, the time it takes for a particle to absorb an SEQ is the
SEQ frame advance time, about 10−23 seconds, depending on the particle.

We are made of elementary particles and atoms; our time is atomic time. The model says
that a particle of matter is altered with every SEQ frame advance; that matter is changed
in quantized increments by the absorption of a quantum of energy with the passage of each
unit of quantized time.

We will propose that it is the absorption of a quantum of energy, by an elementary
particle, in this unit of quantized time, that forms the foundation of quantum time and
quantum gravity. Gravity is the absorption of quantized energy by matter. The time it
takes to absorb a quantum of energy matches the frame advance rate of the SEQ, and gives
us our unit of quantized time. We claim that the quantum unit of time is the time it takes
for a particle of matter to absorb a quantum of energy.

Additionally, the length of a unit of quantum time is not a constant, but expands in
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duration with the expansion of the universe. This growth in the duration of the unit of
quantum time is what gives us the constant, 2c, radial expansion of the hyperverse.
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