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ABSTRACT

We explore indications that the universe is undergoing a geometric mean
expansion. Developing this concept requires the creation of two quantum levels,
one being the quantum of our quantum mechanics, and another that is much
smaller. The generation of quanta is what allows space to expand. We find that
quanta are not static entities, but change with time; for example, the energy of
quanta decreases, and the number of quanta increases, with time. The observable
universe grows while the quantum levels shrink, giving a simple mechanism to
explain the expansion of the universe. The universe does not come from nothing;
it comes from itself.

Subject headings: cosmology; creation of quanta; geometric mean expansion of
space; initial state of the universe; significance of Planck values; universe from
itself

1. Introduction

The core idea of this paper is that the universe is undergoing a geometric mean expan-
sion, an expansion made possible by the creation of quanta.

Building on the work reported in [1] and [2], in this paper we take the delta E value
calculated in [1], insert it into the time-energy uncertainty relation, and find that delta
time for the observable universe is the Planck time squared. This is a remarkable result.
Multiplying the largest and smallest values to get a constant is suggestive of a geometric
mean relationship. After looking at additional calculations that support the idea, we make
the assumption that the universe is undergoing a geometric mean expansion, and find this
to be an amazingly productive model, leading to many significant results:
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• We show why, and how, the large and the small of the universe are connected.

• We will derive the initial conditions, such as the age, radius, mass, and energy of the
universe when expansion started.

• We calculate the large and small values of the observable universe.

• We show that uncertainty equations are geometric mean relationships.

• The Planck relation is a geometric mean relation.

• The model reveals the true significance of the Planck values.

• We will show that expansion creates two different levels of quanta.

• We repeatedly generate the large number reported by Scott Funkhouser, about 10122,
and find this number to be a crucial aspect of the geometric mean model of expansion.

• The model produces a possible size for the whole universe, the universe that lies beyond
the observable. We only take a cursory look at this.

• We calculate how many times the universe has doubled, and show its relationship to
Funkhouser’s large number.

• We again see that expansion continuously creates energy, a conclusion we reached in
[1].

• The creation of quanta explains the addition of space and energy to the universe, giving
us a simple way to explain the expansion of space.

• The universe creates itself, from itself, by way of a geometric mean expansion. It is
not ’a universe from nothing’, but ’a universe from itself’.

1.1. The Large and the Small of the Universe are Related

There are evidences that the large and the small of the universe are deeply related.
Joel C. Carvalho [3], using only atomic scale dimensions, calculated a mass, expressed in
hyperverse terms, of RHc

2

2G
for the observable universe, off by a factor of two from the Hoyle

mass equation we converted to hyperverse terms in [1], shown here in equation (1). Carvalho’s
work suggests there is a deep connection between the small and the large of the universe.
Dimitar Valev [4], using dimensional analysis, discovered a geometric mean relationship,
centered on the Planck mass, between the mass of the universe and what he identified as
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possibly the smallest mass in the universe, a value similar to that reported by Paul S. Wesson
[5], who also used dimensional analysis. Hasmukh K. Tank [6] gives a number of potential
geometric mean relationships between the small and the large of the universe.

The relation between the small and large appears to have been first noticed by Hermann
Weyl, around 1917, and developed further by Dirac [7]. The geometric mean expansion model
presented in this paper gives a physical basis for the connection between the large and the
small, and for the existence of the large numbers discussed by Weyl, Eddington, Dirac, and
others, but without any need for the time variation in the gravitational constant, G, as
proposed by Dirac [8].

1.2. The Geometric Mean

To calculate an arithmetic mean of two numbers, we add the numbers, and then divide
by two. One calculates a geometric mean of two values by multiplying the two numbers and
taking the square root of the product.

Figures 1A and 1B display two ways of visually presenting the geometric mean, the
most common being the triangle in Figure 1A, where the length of side A, times the length
of side B, equals the square of the height: A × B = h2. As side A increases, side B must
decrease in order that their product remains equal to the height squared. A geometric mean
preserves the square of the initial height.

Figure 1A (left) and 1B (right). Two ways of looking at the geometric mean concept.

With the geometric mean, for every large number, there is a corresponding small number.
If the height, ’h’, was equal to one, then if side A in the triangle of Figure 1A were one million
units, side B would be one divided by one million. Expand A to one trillion, and B would
be one over one trillion, and so on; small, but never zero. Just as there is no limit to how
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large a number can be, there is no limit to the how small a number can be; the small is as
infinite as the large.

The series of rectangles in Figure 1B highlights the preservation of the initial area. As
the base of the rectangle lengthens, the height must decrease, in order for the product of
the sides to maintain the initial area. A geometric mean expansion of space would therefore
involve the conservation of the initial quantity.

2. The Geometric Mean Expansion of Space

2.1. The Revelation of Delta E

In [1], we gave the mass of the observable universe, Mo, as:

Mo =
RHc

2

4G
(1)

The energy of the observable universe, Eo, is its mass times the speed of light squared,
c2, or:

Eo =
RHc

4

4G
(2)

If we take the rate of change of the energy of the observable universe, ∆Eo, with respect
to the radius, we get:

∆Eo
∆RH

=
dEo
dRH

=
dRHc

4

4G

dRH

=
c4

4G
(3)

Rearranging:

∆Eo =
c4

4G
∆RH (4)

Since ∆RH = 2c, [2], we see that ∆Eo is one-half the Planck power:

∆Eo =
c5

2G
= 1. 814 592 362 824 05× 1052

J

s
(5)

As a check, we can multiply ∆Eo by the age of the universe, and we get the energy of
the observable universe:
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c5

2G
× RH

2c
=
RHc

4

4G
(6)

The time-energy uncertainty principle is:

∆E ×∆t ≥ ~
2

(7)

With our value of∆Eo, we can calculate∆to, the rate of change of time for the observable
universe. We get a significant result, the Planck time squared:

∆to =
~

2∆Eo
=
G~
c5

(8)

We have taken the largest value of delta E, and found what appears to be the smallest
delta time value, their product equaling a constant; this is suggestive of a geometric mean
relationship.

2.2. Delta Time Divided by the Total Time Gives ’Small Time’

If we divide delta time for the observable universe, by the age of the universe, we get
what we will call ’small time’, ts:

∆to
To

=
G~
c5

RH
2c

= 2
G~
RHc4

= ts = 6. 639 859 798 408 22× 10−105 seconds (9)

Alternatively, we can express small time as a function of the age of the universe, in a
form we will use later:

ts =
To(
RH
2lp

)2 (10)

where To is the age of the observable universe, ~ is h-bar (Planck’s constant divided by
2 pi), lp is the Planck length, and RH is the radius of the hyperverse.

We define small time, ts, as the smallest unit of time in the observable universe. This
value is much less than the Planck time, which is 5.39056× 10−44 seconds. The ratio of the
Planck time to small time is:



—6 —

5.39056× 10−44

6. 639 859 798 408 22× 10−105
= 8. 118 484 672 360 53× 1060 (11)

This value is equal to the ratio of the hyperverse radius to two times the Planck length:

RH

2lp
=

2.62397216× 1026 m

3. 232 1× 10−35 m
= 8. 118 474 552 148 757 773 6× 1060 (12)

2.3. Large Energy times Small Time Also Equals h-bar over Two:

Small time, from equation (9), can be rearranged and expressed as:

ts =
~
2
× 1

Eo
(13)

Equation (13) looks like the time-energy uncertainty principle when restated as:

Eo × ts =
~
2

(14)

In this case we have the largest unit of energy, the energy of the universe, multiplied by
what we are defining as the smallest unit of time, ’small time’, and the result is h-bar over
two, ~

2
. We see that ~

2
is not just the product of the delta values, but also of the opposite and

extreme values of time and energy as well, further suggesting a geometric mean relationship
exists between energy and time.

∆Eo ×∆to =
~
2

� Eo × ts =
~
2

(15)

2.4. The Large and the Small Form Geometric Mean Relationships

We saw in (9) that delta time, divided by the age of the universe, gives small time.
Rearranging (9) gives:

To × ts = t2Planck (16)
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Equation (16) is a geometric mean equation as well, as we have the largest and the
smallest time values equaling the square of the Planck time, a constant. This implies that
as the age of the universe (which is large time) increases, the small unit of time decreases,
and the pivot point is a constant, the Planck time squared. Equation (15) speaks similarly,
the energy of the observable universe increases as the unit of small time decreases.

At this point, we will assume the hyperverse is undergoing a geometric mean expansion,
and examine the consequences.

2.5. The Initial State: When the Age of the Universe Equaled Small Time

We will now explore what conditions existed when large time and small time were
identical, by setting the age of the universe equal to small time, and solving first, for the
radius:

Let the age of the universe equal small time:
RH

2c
= 2

G

c4
~
RH

(17)

Solving for RH gives us two times the Planck length. That is, the hyperverse radius,
when the age of the universe was the small time, was two Planck lengths:

initial hyperverse radius = Ri = 2lp (18)

To make sure this idea is clear, refer to the starting square in Figure 1B. In the initial
state of a geometric mean relationship, both sides are identical, and their product is the
conserved value. We just set the large and small radii equal and found the conserved value,
which is the square of two Planck lengths, 4l2p . The square root, two Planck lengths, is the
initial value.

Let us now substitute the initial radius, 2lp, for RH in other equations.

If we take our equation for the age of the universe, RH
2c
, and substitute the initial length

of 2lp for the hyperverse radius, we get the Planck time, tp, as the initial time:

RH

2c
⇒ 2lp

2c
=

√
G

c5
~ = tp = initial time (19)

Substituting 2lp for RH in the equation of the energy of the universe, tells us the initial
energy of the universe was one-half the Planck energy:
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RHc
4

4G
=

(2lp) c
4

4G
=

√
c5~
G

2
=
Ep
2

= initial energy (20)

The initial mass of the universe was one-half the Planck mass:

RHc
2

4G
⇒ (2lp) c

2

4G
=

√
c~
G

2
=
Mp

2
= initial mass (21)

The initial angular momentum of the universe, L = mvT r, was the square root of two
times h-bar:

(
(2lp) c

2

4G

)(√
2c
)

(2lp) =
√

2~ = initial angular momentum (22)

Note that the tangential velocity is taken as a constant,
√

2c , [2].

The rotational kinetic energy, 1
2
Iω2, is the same as the initial energy:

1

2

(
mr2

) (vT
r

)2
=

1

2
mv2T =

1

2

(
(2lp) c

2

4G

)(
2c2
)

=

√
1

4G
c5~ =

Ep
2

(23)

The initial circumference was 2π2lp

The initial Schwarzschild radius (using the initial mass) was the Planck length. Even
at the initial state, the Schwarzschild radius was one-half of the hyperverse radius.

Rschwarzschild =
2GM

c2
=

2G
√

c~
4G

c2
= lp (24)

Table 1 gives a summary of the initial values. The subscript ’i’represents the initial
value, when the age of the universe equaled small time.

Ri = 2lp li = lp
Ei = Ep

2
Mi = Mp

2

ti = tp Li =
√

2~
Initial KErotational = Mic

2 = Ei Initial Circumference = 4πlp

Table 1. Summary of some of the initial values of the universe.
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2.6. The Large and Small Values of the Observable Universe

Using the concept of the geometric mean expansion and the initial values, let us deter-
mine the large and small values of the universe.

We can calculate the geometric mean counterpart to the radius of the hyperverse, what
we will call the small radius, Rs. The hyperverse radius, RH , multiplied by this small radius,
Rs, is equal to the initial radius squared: RH ×Rs = (2lp)

2. The small radius is:

Rs =
(2lp)

2

RH

=
4l2p
RH

= 3. 981 166 633 261 84× 10−96 m (25)

We can also express the small radius as:

Rs =
RH(
RH
2lp

)2 (26)

The energy of the observable universe, times the small energy, should equal the initial
energy squared: Eo × ESEQ = E2i . Rearranging and solving for the small energy gives us
c~
RH
. We will refer to this quantum of energy, associated with the small energy, as the ’small

energy quantum’, or ESEQ:

ESEQ =
E2i
Eo

=

(√
c5~
G

2

)2
RHc4

4G

=
c~
RH

= 1. 204 863 888 041 40× 10−52
m2

s2
kg (27)

The structure of the equation for ESEQ is similar to the Planck relation. Notice that
ESEQ decreases with time (because RH increases with time).

The small energy quantum is also expressed as:

ESEQ =
Eo(
RH
2lp

)2 (28)

Similarly, we can calculate small mass, Ms, using the geometric mean relationship,
Mo ×Ms = M2

i .
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MSEQ =
M2

i

Mo

=

(√
c~
G

2

)2
RHc2

4G

=
~

cRH

= 1. 340 591 872 566 24× 10−69 kg (29)

MSEQ =
Mo(
RH
2lp

)2 (30)

The small volume is:

Vs =
(initial volume)2

surface volume of hyperverse
=

(
2π2 (2lp)

3)2
2π2R3H

=
2π2R3H(
RH
2lp

)6 (31)

The radius for this small volume is the small radius, Rs, as seen in equation (25):

Radius of small volume =

(
R3H

(
2lp
RH

)6) 1
3

=
4l2p
RH

= Rs (32)

The angular momentum of the observable hyperverse, Lo. The velocity is the tangential
velocity,

√
2c.

Lo = mrvT =

(
RHc

2

4G

)
(RH)

(√
2c
)

=
√

2~
(
RH

2lp

)2
= 9. 829 702 483 454 73×1087

m2

s
kg (33)

From this we can calculate the geometric mean partner of the large angular momentum:

Ls =
L2i
Lo

=

(√
2~
)2

√
2~
(
RH
2lp

)2 =
√

2~
(

2lp
RH

)2
= 2. 262 781 599 120 41× 10−156

m2

s
kg (34)

Notice that Ls matches the angular momentum derived from using the two quantum
quantities, Es and Rs:

Ls = mrv =

(
~

cRH

)(
4l2p
RH

)(√
2c
)

=
√

2~
(

2lp
RH

)2
(35)
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2.7. Summary of Values

Table 2 shows the initial, large, and small values for the observable hyperverse. To
clarify, ’small’ refers to the value generated from the geometric mean expansion. Some
quantities are attributable to the small energy quantum and others to the small radius
quantum, both of which we will explore next.

Initial Large Small

Radius 2lp RH Rs =
4l2p
RH

Time tp To = RH
2c

ts = 2 G~
c4RH

Energy Ep
2

=

√
c5~
G

2
Eo = RHc

4

4G
Es = c~

RH
= Rsc4

4G
= ESEQ

Mass Mp

2
=

√
c~
G

2
Mo = RHc

2

4G
~

cRH

Angular Momentum
√

2~
√

2~
(
RH
2lp

)2
discussed later

Table 2. A summary of some of the large and small dimensions of a universe undergoing a
geometric mean expansion.

2.8. Products of the Large and Small Equal Constants

Let us look at the product of some of the large and small aspects of the universe, from
Table 2. Considering the equivalence of mass and energy, we will retain the energy, and drop
the mass. We find the products equal constants, as summarized in Table 3. For example,
large time (in row one) multiplied by small energy (column one), is h-bar divided by two:

small ⇓ \ large=⇒ Radius RH Time RH
2c

Energy RHc
4

4G

Radius
4l2p
RH

R2i 2G~
c4

c~
Time 2 G~

c4RH
2G~
c4

T 2i
~
2

Energy c~
RH

c~ ~
2

E2i

Table 3. The product of large and small values equal constants. The left column represents
the small values from Table 2, and the top row gives the large values. The product of the
same dimensions, such as large and small radius, equal the initial values, squared, and are

left out to highlight the other products.
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2.9. Large and Small Delta Values

Let us now determine the delta values for the small and large aspects of the geometric
mean expansion. We can calculate the rate of change of the small counterpart of ∆RH , by
dividing the square of the initial radius, (2lp)

2, by ∆RH . We previously determined ∆RH to
be 2c [1]. We find:

∆Rsmall =
4l2p

∆RH

=
4G~
c3

2c
=

2G~
c4

= 1. 742 280 725 732 64× 10−78 m s (36)

Since delta E for the observable hyperverse is ∆Eo = c5

2G
, small delta E comes out as

h-bar divided by two, ~
2
:

∆Esmall =
(initial energy)2

∆Eo
=

(√
c5~
G

2

)2
c5

2G

=
~
2

= 5. 272 863 3× 10−35
m2

s
kg (37)

Delta time is the Planck time squared. The initial time is the Planck time. To get the
geometric mean counterpart, we divide the square of the initial time by our value of ∆t,
which is also the Planck time squared, and since they are the same, we get one, just the
number one, a quantity without any dimensions such as length, energy,

mass or time:

∆tsmall =

(√
~G
c5

)2
~G
c5

= 1 (38)

Table 4 summarizes the large and small delta values, and shows their geometric means,
matching those of the large and small from Table 2.

big ∆ small ∆

∆Radius 2c 2G~
c4

∆Time 1 ~G
c5

∆Energy c5

2G
~
2

Table 4. A listing of the large and small delta values of the universe.
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2.10. Uncertainty Principles are Geometric Mean Equations

If we take the large and small delta values from Table 4, and cross multiply them, we
get the same results as shown in Table 3; the products of the extreme large and small are
identical to the products of the delta values. Besides both sets of products being identical,
and equaling constants, as we would expect for a geometric mean relationship, the products
give us the uncertainty relationships, at least when the velocity is the speed of light. We
have seen one example already, the time-energy uncertainty relation, in equation (8).

We have been using delta radius, not delta length, in these equations. If we take the
radius, and divide it by 2, we get a ’length’; a ’length’is one-half a radius. Recall that in the
initial state, the radius was two Planck lengths. The Schwarzschild radius was one Planck
length. We will define one-half delta radius as delta length and show it as ∆x, defined here
as ’position’.

∆R

2
= ∆length = ∆x = position (39)

From this, we can derive the position-energy uncertainty equation:

∆x×∆E =
c~
2

(40)

and the position-time uncertainty:

∆x×∆T =
G~
c4

(41)

2.11. The Planck Relation is a Geometric Mean Equation

In equation (40), if we use delta radius, instead of delta length, we get:

∆R×∆E = c~ (42)

Rearranging (42) gives:

∆E =
c~

∆R
(43)
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Similarly, since RH × ES = c~, we can state, as we did in equation (27):

Es =
c~
RH

(44)

The same association exists if we use mass instead of energy:

Ms =
~

cRH

(45)

These are both Planck relations. Let us look at this in another manner. The Compton
wavelength for a mass the size of the observable universe is given in the Planck relation:

RCompton =
~
Moc

(46)

Rearrange and insert our mass value:

RHc
2

4G
×RCompton =

~
c

(47)

and we find that the Compton radius of the observable universe is the small radius,
RSRQ.

RCompton =
~
c

RHc2

4G

=
4l2p
RH

= RSRQ = the small radius (48)

The largest mass, times the smallest radius, is a constant, ~
c
. We get the same result if we

multiply the largest radius times the smallest mass, or the large and small delta values. This
most fundamental quantum equation, the Planck relation, is a geometric mean relationship,
supporting the claim that the universe is undergoing a geometric mean expansion.

2.12. The Planck Values Represent the State of the Universe When
Expansion Started

The geometric mean expansion model produces Planck values for the initial condition,
as shown in Table 1. We defined the initial time as the Planck time. Our initial time is not
’time equals zero’, but ’time equals 5.39056× 10−44 seconds’. This is the starting age of the
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universe for this model. The initial energy, mass, radius, and angular momentum, etc., are
the values that existed when the universe was as old as the Planck time. These calculations
do not tell us about the nature of the universe prior to the Planck time, but they do tell us
about the universe at that moment.

Although the Planck units are profoundly important in physics, they have no clear,
accepted, physical significance. The Planck scale is often said to be "the limit below which
the very notions of space and length cease to exist" [9], which is inconsistent, given that the
Planck energy and mass are gigantic values. The Planck mass is 1019 times greater than the
mass of a proton.

An extremely large Planck value is the Planck power, Pp, given as the Planck energy
divided by the Planck time:

Pp =
Ep
tp

=

√
c5~
G√
~G
c5

=
c5

G
=

(2.99792458× 108 m s−1)
5

6.67259× 10−11 m3 kg−1 s−2
≈ 3. 629 × 1052

J

s
(49)

Far from being a lower limit, the Planck power has been said to be the absolute upper
limit for power of anything in the universe [10]. Notice that our value of delta energy of the
observable universe, ∆Eo, is one-half the Planck power (the initial energy divided by the
initial time), and we derived it from a geometric mean equation.

The Planck values represent the initial values of the universe, the geometric means of
aspects of the universe, as shown in Table 1. They tell us about the state of the universe
at the time expansion started. This explains, for example, why the Planck values have no
identifiable physical significance; they are historical values, preserved as geometric means,
accounting for their odd range of sizes, and their presence in cosmological calculations.

3. Expansion Creates Two Quantum Levels

3.1. The Small Energy Quantum

The energy of the small energy quantum, ESEQ, is the geometric mean counterpart of
the energy of the observable universe. If we divide the energy of the hyperverse by the energy

of the small energy quantum, we see there are
(
RH
2lp

)2
units of ESEQ within the observable

universe:
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number of small energy quanta =
RHc

4

4G
c~
RH

=

(
RH

2lp

)2
(50)

The volume and radius of the small energy quantum can be calculated by dividing the

volume of the observable universe, Vo, by the number of small energy quanta,
(
RH
2lp

)2
, and

calculating the radius:

volume of a small energy quanta =
Vo

number of small energy quanta
=

2π2R3H(
RH
2lp

)2 = 2π2
(
RH4l2p

)
(51)

The radius of the small energy quantum is the cube root of the term
(
RH4l2p

)
:

RSEQ = radius of small energy quanta = 3

√(
RH4l2p

)
= 6. 495 953 894 227 41×10−15 m (52)

This radius can also be expressed as:

RSEQ = RH

(
2lp
RH

) 2
3

(53)

3.2. The Small Radius Quantum

We can calculate the number of small radius volumes within the observable universe by
dividing the volume of the observable universe by the volume of a 4D-sphere with radius Rs:

number of small volumes =
2π2R3H

2π2
(
4l2p
RH

)3 =

(
RH

2lp

)6
(54)

Dividing the energy of the observable universe by the number of small volumes gives
the energy per small radius volume:

SRQ energy =
RHc

4

4G(
RH
2lp

)6 =
RHc

4

4G
×
(

2lp
RH

)6
= 2. 773 581 940 492 9× 10−296

m2

s2
kg (55)
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We will refer to the quantum defined by the small radius as the small radius quantum,
or SRQ.

3.3. The Quanta are Distinct

It appears that the geometric mean expansion of space creates these two quantum levels,
the small energy quantum, or SEQ, from the energy of the observable universe, and the small
radius quantum, or SRQ, from its radius. Their ratio:

ESEQ
RSRQ

=
c~
RH
4l2p
RH

=
c4

4G
(56)

matches the energy to radius ratio of the observable hyperverse:

Eo
RH

=
RHc

4

4G

RH

=
c4

4G
(57)

Despite the deep relationship between the quantum levels, both the SEQ and the SRQ
have distinct identities.

The SEQ is larger than the SRQ; the SEQ consists of
(
RH
2lp

)4
units of small radius

quanta:

number of small volume quanta
number of SEQ

=

(
RH
2lp

)6
(
RH
2lp

)2 =

(
RH

2lp

)4
= 4. 344 079 202 020 98×10243 (58)

A side-by-side comparison of the two quantum levels is shown in Table 5:

SEQ (small energy quantum) SRQ (small radius quantum)

Radius
(
RH4l2p

) 1
3 ≈ 6. 495 95× 10−15 m

4l2p
RH
≈ 3. 981 17× 10−96 m

Energy c~
RH
≈ 1. 204 86× 10−52 m

2

s2
kg c~

RH

(
2lp
RH

)4
≈ 2. 773 58× 10−296 m

2

s2
kg

Table 5. Comparison of the energy and radii of the two quantum levels
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4. The Large Number of the Universe

4.1. The Ratio of the Large to the Small

The reoccurring term
(
RH
2lp

)2
, the ratio of the hyperverse radius to the small radius, will

be referred to as the ’large number’:

The large number =
large radius
small radius

=
RH

4l2p
RH

=

(
RH

2lp

)2
= 6. 590 962 905 388 70× 10121 (59)

Its reciprocal is:

The reciprocal of the large number =
(

2lp
RH

)2
= 1. 517 228 991 203 11× 10−122 (60)

The large number is a common ratio of the large and the small in the observable universe:

Small

Radius Rs = RH

(
2lp
RH

)2
Time Ts = To

(
2lp
RH

)2
Energy ESEQ = Eo

(
2lp
RH

)2
Mass Ms = Mo

(
2lp
RH

)2
Table 6. Expressing features of the universe in terms of the large number.

4.2. The Large Number

In 2008, Scott Funkhouser [11] reported six cosmological numbers equaling approxi-
mately 10122, very close to the 6.59 × 10121 figure that we are seeing repeatedly in our
calculations.

The first example Funkhouser gave as producing this large number is the ratio of the
initial mass density to the vacuum mass density. Calculating this ratio of mass densities
gives us the large number:
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initial mass density
mass density of universe

=
initial mass
initial volume

mass of the observable universe
surface volume of hyperverse

=

√
c~
G
2

2π2
(
2
√

G~
c3

)3
RHc2

4G

2π2R3H

=

(
RH

2lp

)2
(62)

Funkhouser’s second example, deals with the ratio of the mass of the universe to the
smallest mass. We will take his particle horizon as the radius of the observable universe.
The Wesson mass, which he describes as the smallest physically significant quantum of mass
in the universe, is given as about 1.5× 10−68 kg, a value derived by dimensional analysis [5].
The Wesson mass is remarkably close to our SEQ value of about 1. 341 × 10−69 kg, derived
from the geometric mean expansion model. Using our values for the masses, we get the large
number:

RHc
2

4G
~

cRH

=

(
RH

2lp

)2
(63)

The third example says that the maximum number of degrees of freedom in the universe
is one quarter of the surface area of a sphere whose radius is the cosmic event horizon. The
event horizon distance, in the hyperverse model, is one-half the radius of the hyperverse.
The value reported by Funkhouser is approximately 2.5× 10122. Our value is:

π
(
RH
2

)2
l2p

= π

(
RH

2lp

)2
= 2. 070 612 064 365 197 093 6× 10122 (64)

Example 4, Funkhouser equation 2.4, the maximum number of logical operations that
could be performed by a mass the size of the observable universe is 2Mp0c2T0

π~ , where Mp0 is
the particle horizon, and T0 is the age of the universe. The value Scott Funkhouser reports
is 2.1 × 10122. We will define Mp0 as the mass of the observable universe, Mo, and the age
as RH

2c
. We get:

2
(
RHc

2

4G

)
c2RH

2c

π~
=

1

π

(
RH

2lp

)2
≈ 2. 098× 10121 (65)

Funkhouser’s fifth example, the number of nucleon volumes that can be held within the
volume of the current event horizon, is about 1.3 × 10123. Our value, using RH/2 as the
event horizon, is:
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2π2
(
RH
2

)3
2π2

(
RH4l2p

) =
1

8

(
RH

2lp

)2
(66)

Had they instead used the observable universe as the volume, we’d find a perfect match
to the large number.

Funkhouser’s example number six deals with the ratio of the gravitational potential

energy of the universe over the gravitational binding energy of a nucleon:
M2
p0

Rp0
/m

2
n

ln
where mn

is the mass of a nucleon and ln is the length of a nucleon. Funkhouser value is approximately
9.3× 10119. Using our values, we get the large number:

(
M2

R

)
(
m2
p

rp

) =

(
RHc2

4G

)2
RH(

1
4G

~2
RH

) 2
3

(RH4l2p)
1
3

=

(
RH

2lp

)2
(67)

It appears our large number,
(
RH
2lp

)2
, is the large number reported by Funkhouser.

4.3. The Number of Frame Advances

The hyperverse model incorporates the concept of frame advances [2], the incremental
steps of radial expansion, where it was proposed that a frame advance is one radial length.
The number of frame advances, since the start of expansion, is the ratio of the hyperverse
radius to the small radius, and that works out to be the large number:

Number of frame advances =
radius of hyperverse

small radius
=
RH

4l2p
RH

=

(
RH

2lp

)2
(68)

We defined small time, in equation (10), as To(
RH
2lp

)2 , the age of the universe divided by
the number of frame advances. Thus ts, small time, is the time it takes to make one frame
advance. In one frame advance, the universe advances one small radius of distance in one
small unit of time. The velocity is 2c, our rate of radial expansion from [1]:
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v =
Rs

ts
=

4l2p
RH

2G
c4

~
RH

= 2c (69)

5. Significant Geometric Means for the Derived Quanta

As stated, the SEQ energy and the SRQ radius, are geometric mean counterparts of
the energy and radius of the observable universe, respectively. That leaves us to enquire as
to what might be the geometric mean counterparts of the SEQ radius and the SRQ energy.
The results are profound.

5.1. The Size of the Whole Universe - a First Look

We can take the energy value of the SRQ, and using the geometric mean concept,
determine its large partner energy. Dividing the square of the initial energy by the small

radius quantum energy gives Eo
(
RH
2lp

)4
:

Elarge =

(√
c5~
G

2

)2
RHc4

4G
×
(
2lp
RH

)6 =

(
RHc

4

4G

)(
RH

2lp

)4
= Eo

(
RH

2lp

)4
(70)

The result hints at the possible energy, and size, of the whole universe, greater by a

factor of
(
RH
2lp

)4
, or 4. 3 × 10243 times the observable. The whole universe is potentially

immensely larger than the observable universe. This topic is beyond the scope of this paper,
but is too suggestive to not include here.

5.2. The Particle Radius

The small energy quantum radius, RSEQ, is 6. 495 953 894 227 41 × 10−15 meters, very
close to the reduced Compton wavelength of elementary particles and nucleons. The geo-
metric mean counterpart of the small energy quantum radius, RGM_SEQ, is:
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RGM_SEQ =
(2lp)

2(
RH4l2p

) 1
3

=

(
16l4p
RH

) 1
3

= 1. 608 150 331 744 687 220 7× 10−55 m (71)

It will be argued in [12] that the similarity of RSEQ to the Compton radius of an elementary
particle is not a coincidence, and that RGM_SEQ, the geometric mean counterpart of RSEQ,
is the actual, idealized, particle radius, and leads to a model of both matter and gravity.

6. Creating the Observable Universe from a Planck Scale Vortex

6.1. The Number of Doublings is the Square Root of the Large Number

To calculate the number of times the hyperverse has doubled, we can ask what value of
’n’solves this equation:

2n × 2lp = RH or 2n =
RH

2lp
(72)

There have been about 202.3 doublings of the hyperverse since expansion started:

log2

(
RH

2lp

)
= log2

(
2.62397216× 1026 m

2 (1.61605× 10−35 m)

)
= 202. 336 894 366 120 619 5 (73)

The value of 2202. 336 894 366 120 619 5 is the square root of the large number:

2202. 336 894 366 120 619 5 = 8. 118 474 552 148 757 782 8× 1060 (74)

We can use the equation 2n× 2lp = RH to check that it produces the hyperverse radius,
which it does:

(
8. 118 474 552 148 757 782 8× 1060

)
×2
(
1.61605× 10−35 m

)
= 2. 623 972 160 000 000 003 0×1026 m (75)

We can apply the doubling concept to energy: 2202. 336 894 366 120 619 50× initial energy:
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2202. 336 894 366 120 619 50×1. 956 333 046 737 717 225 4× 109

2
J = 7. 941 226 863 350 439 148×1069 J (76)

which is our value for the energy of the universe as derived from RHc
4

4G
.

The doubling applies to time as well, giving us the correct age of the universe:

(
8. 118 474 552 148 757 782 8× 1060

)
×5.39056×10−44 s = 4. 376 312 418 183 1×1017 s (77)

For an example, we can take the initial time, which is the Planck time, and multiply it
by RH

2lp
to get the current age:

(
RH

2lp

)
×
√
~G
c5

=
RH

2c
(78)

6.2. Doubling: ’Now’versus ’Then’for the Observable Universe

An easy way to see the effects of a doubling of the size of the hyperverse is to compare
the hyperverse today, or "now", to when its radius was one-half the current size, which we
will refer to as "then". Let us start with the radius:

large radius now
large radius then

=
RH

RH
2

= 2 (79)

As we would expect, the large radius has doubled with a doubling of the large radius.
Next, we see that the small radius, Rs, shrinks by one-half with a doubling of the hyperverse
radius:

SRQ radius now
SRQ radius then

=

4l2p
RH
4l2p
RH
2

=
1

2
(80)

The SEQ radius, RSEQ, actually gets a little larger with expansion, growing by the cube
root of two, 3

√
2, as the hyperverse radius doubles:
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RSEQ now
RSEQ then

=

(
RH4l2p

) 1
3(

RH
2

4l2p
) 1
3

=
3
√

2 = 1. 259 921 049 894 87 (81)

The surface volume of the hyperverse, which is the volume of the observable universe,
increases eight times:

hyperverse surface volume now
hyperverse surface volume then

=
2π2R3H

2π2
(
RH
2

)3 = 8 (82)

while the surface volume of the small volume (based on Rs) shrinks by one-eighth:

small surface volume now
small surface volume then

=
2π2R3s

2π2
(
Rs
2

)3 =
2π2

(
4l2p
RH

)3
2π2

(
4l2p
RH
2

)3 =
1

8
(83)

The total energy of the universe doubles with a doubling of the hyperverse radius:

total hyperverse energy now
total hyperverse energy then

=
RHc

4

4G
RH
2
c4

4G

= 2 (84)

The energy of the small energy quantum (SEQ) shrinks to one-half per doubling of the
hyperverse radius:

the small energy quantum now
the small energy quantum then

=
c~
RH
c~
RH
2

=
1

2
(85)

The number of SEQ increases by four times with a doubling:

the number of SEQ now
the number of SEQ then

=

(
RH
2lp

)2
(

RH
2

2lp

)2 = 4 (86)

The surface volume of a SEQ increases by two with a doubling:
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volume of one SEQ now
volume of one SEQ then

=
2π2

(
RH4l2p

)
2π2

(
RH
2

4l2p
) = 2 (87)

The energy of the small radius quantum (SRQ) shrinks to 1/32:

the small radius quantum energy now
the small radius quantum energy then

=

c~
RH

(
2lp
RH

)4
c~
RH
2

(
2lp
RH
2

)4 =
1

32
(88)

The number of SRQ volumes increases by 64 times:

number of SRQ now
number of SRQ then

=

(
RH
2lp

)6
(

RH
2

2lp

)6 = 64 (89)

The energy density of the SEQ drops to one quarter:

SEQ energy density now
SEQ energy density then

=

c~
RH

2π2(RH4l2p)
c~
RH
2

2π2
(
RH
2
4l2p

)
=

1

4
(90)

The energy density of the SRQ also drops to one quarter:

SRQ energy density now
SRQ energy density then

=

(
RHc4

4G

)(
2lp
RH

)6
2π2R3H

(
2lp
RH

)6
(

RH
2 c4

4G

)(
2lp
RH
2

)6

2π2
(
RH
2

)3( 2lp
RH
2

)6
=

1

4
(91)

And the energy density of the observable hyperverse also drops to one quarter:

hyperverse energy density now
hyperverse energy density then

=

RHc4

4G

2π2R3H
RH
2 c4

4G

2π2
(
RH
2

)3
=

1

4
(92)
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Time is directly proportional to the hyperverse radius: a doubling of the hyperverse
radius is accompanied by a doubling in the time passed:

time now
time then

=
RH
2c
RH
2

2c

= 2 (93)

A summary is given in Table 7. An arrow pointing up indicates the quantity increases
with time, while a downward pointing arrow means the quantity decreases with time:

observable SRQ SEQ

Radius RH = 2x ↑ RSRQ = 1
2
x ↓ RSEQ = 3

√
2x ↑

Volume per unit Vo = 8x ↑ VSRQ = 1
8
x ↓ VSEQ = 2x ↑

Energy per unit Eo = 2x ↑ ESRQ = 1
32
x ↓ ESEQ = 1

2
↓

Number of units 1 64x ↑ 4x ↑
Total Energy = Energy x Number 2x ↑ 2x ↑ 2x ↑

Energy Density 1
4
↓ 1

4
↓ 1

4
↓

Table 7. Summary of the effects of a doubling the hyperverse radius on the observable
hyperverse and the two quantum levels.

6.3. The Speed of Light Remains Constant

Like the tangential velocity, the speed of light remains constant. The speed of light
can be described as the distance light travels in one unit of time. With our geometric mean
values, we see that light travels one small length, which is one half the small radius, in one
small unit of time:

small radius now
small time now

=
Rs
2

ts
=

4l2p
RH

2

2G
c4

~
RH

= c (94)

Using a ’now and then’approach, even a doubling of the hyperverse radius, which alters
both the value of the small length and small time, the speed of light remains constant, so
the speed of light is unchanged by expansion:
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small radius then
small time then

=

(
4l2p
RH
2

)
2

2G
c4

~
RH
2

= c (95)

6.4. The Continuous Creation of Energy

With a doubling of the hyperverse radius, we find that the radius of the small radius
quantum (SRQ) shrinks by one-half, accompanied by a decrease in the energy per small
radius quantum, to 1/32 of the starting value, while the number of SRQ increases from one
to sixty four, producing a net increase in energy of two times, matching the increase of the
universe. At the SEQ level, the total energy doubles as well.

The first doubling was like any other. Energy doubled from one-half the Planck energy
to the Planck energy, while the doubling of this initial hyperverse radius produced 64 hyper-
vortices comprising the surface of the now rapidly expanding hyperverse. Approaching this

a little differently, since rotational kinetic energy of a single vortex is 1
2
Iω2 , or1

2
mr2

(√
2c
r

)2
,

which reduces to mc2, multiplying this energy by the number of vortices, 64, we get the dou-
bled energy. The initial energy was one half the Planck energy, so the first doubled energy
was the Planck energy:

1

2
mv2T =

1

2


 4lpc2

4G(
4lp
2lp

)6
(√2c

)2× (4lp
2lp

)6
=

√
1

G
c5~ = EPlanck (96)

The expansion created energy from its very start. From an initial energy of one-half the
Planck energy, or about 9. 78× 108 joules, the current energy of the observable universe has
increased by 8. 118 6× 1060 times, or RH

2lp
, to its current value of about 7. 94× 1069 joules.

As discussed in [12], the ratio of mass or energy to the radius is conserved with expansion,
the relationship being quite visible in our equation of the mass of the universe, Eo = RHc

4

4G
.

The ratio of energy to radius is a constant, c4

4G
:

Eo = RH

(
c4

4G

)
(97)

From this equation, we see that a doubling of the radius would produce a doubling of
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the energy; they are closely bound; increasing the radius increases the energy, supporting the
’now vs. then’calculations. All of this also tells us that the universe is continually creating
energy.

In equation 17 of [2], we could define the Hubble constant as the ratio of the change in
the energy of the observable universe, to its total energy,

H =
∆Eo
Eo

(98)

implying that the Hubble constant is a measurement of the increase in energy in the
universe, a continual process.

6.5. The Quanta were United in the Initial State

In the initial state, both the SEQ and SRQ were identical quanta; they were as one
with the initial state. As the following calculations show, Table 8, there was no separation
between the quantum levels or between them and the initial state. We can take our initial
values for energy and radius, plug in the energy and radius values for both the SEQ and
SRQ, and we get the initial values. Both quantum levels were united at the initial state;
there were no quanta.

SEQ energy:
(
RHc

4

4G

)(
2lp
RH

)2
⇒
(
2lpc4

4G

)(
2lp
2lp

)2
=

√
c5~
G

2

SEQ radius:
(
RH4l2p

) 1
3 ⇒

(
2lp4l

2
p

) 1
3 = 2lp

SRQ energy: c~
RH

(
2lp
RH

)4
⇒ c~

2lp

(
2lp
2lp

)4
=

√
c5~
G

2

SRQ radius:
4l2p
RH
⇒ 4l2p

2lp
= 2lp

Table 8. The radii and energies of both quantum levels were identical at the initiation of
expansion; the quanta were united.

7. A Universe from Itself: The Geometric Mean Expansion Creates Space and
Energy

We will now present insight into how the geometric mean expansion of space creates
space and energy, starting from our initial condition.
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7.1. Adding Space to the Universe

Let us look at the two quantum levels, starting with the small radius quantum, or SRQ.
With a doubling of the hyperverse radius, each SRQ turns into 64 SRQ, each individual
quantum having a radius of one-half the starting value. Sixty four SRQ would make a cube
4 × 4 × 4 per side. After a doubling, the length of a side contains four SRQ, each with a
new radius of one-half the starting SRQ radius, so the side has grown from one length to
two lengths. The distance between two points has doubled, as expected with a doubling of
the hyperverse radius.

With a doubling of the hyperverse radius, one SEQ turns into four SEQ, while the SEQ
radius has grown by 2

1
3 times. The four SEQ would make a cube 4

1
3 (equivalent to 2

2
3 ) units

per side, with the radius of each quantum being 2
1
3 times larger. The product of the two

also gives us the expected increase of two times:

2
2
3 quanta per side× 2

1
3 length increase per quanta = 2 (99)

Or we can take the cube root of the product of the final volume, after a doubling, and
see that the radius has grown by two times:

3

√
4×

(
2
1
3

)3
= 2 (100)

We can argue that adding volume, or distance, to space is just as much of an issue as
adding energy. The geometric mean expansion, acting on the quanta of space, allows the
three dimensional volume of space to expand, and the ’price’is shrinkage of the small radius,
the radius, or thickness, in the fourth dimension.

7.2. Adding Energy to the Universe

The energy of the observable universe is:

EO =
RHc

4

4G
(101)

Centripetal force, FC , discussed at length in [12], is
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FC = mα = m
v2T
r

=
RHc

2

4G

2c2

RH

=
c4

2G
(102)

Energy, RHc
4

4G
, can be expressed as the product of centripetal force and distance. In our

case, we have:

EO = FC × distance =
c4

2G
× RH

2
(103)

where the distance is one-half the radius. Energy, then, is a function of the radius. With
a doubling of the radius, we have a doubling of energy.

7.3. A Universe from Itself

The large and the small of the universe are connected to one another because the universe
is undergoing a geometric mean expansion. The geometric mean model takes the universe
back to the Planck time, when the universe was about 5.39 × 10−44 seconds of age. There
were no separate quanta when expansion started.

A geometric mean expansion allows us to explain how to grow the hyperverse, going
from an initial vortex, with a radius of two Planck lengths, 1.61605 × 10−35 meters, to the
observable universe, at 2.62397216 × 1026 meters, to even what appears to be the whole
universe, at 4.281 × 10107 meters (unpublished data), without any need to create something
from nothing.

It appears that the creation and continued shrinkage, or relative shrinkage, of quantum
levels allows the whole to expand. The whole gets larger while the components shrink, the
process following a geometric mean relationship. A geometric mean expansion conserves
certain values, and in the case of the expanding universe, it is the Planck values that are
conserved.

Many cosmologists believe the universe came from nothing; where else could the vast
increase in energy come from? Nothingness seems the only source. There is a simple alter-
native. The geometric mean expansion of space gives us a way to grow a universe without
added energy, eliminating the need to figure out how nothing can become something, at least
starting from our initial state.

Expansion is self-contained, the whole expanding while the quanta shrink. It is not a
universe from nothing; the universe creates itself, out of itself. The universe comes from
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itself.

In [12] we develop the hyperverse concept further, and based on the creation of quanta,
develop a model of matter. We will see that particles of matter, like quanta, are not static
entities, and this immediately leads to a model of quantum gravity.
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